
JAMES COOK UNIVERSITY

SCHOOL OF ENGINEERING
AND PHYSICAL SCIENCES

EG4011/EG4012

Realtime Empirical Mode
Decomposition for Intravascular

Bubble Detection

Li-aung Yip

Thesis submitted to the School of Engineering and Physical Sciences in
partial fulfilment of the requirements of the degree of

Bachelor of Engineering (Electrical and Electronic) -
Bachelor of Science (Mathematics)

September 2010

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

Statement of Access

I, the undersigned, the author of this thesis, understand the James Cook University will make
it available for use within the University Library and, by microfilm or other means, allow
access to users in other approved libraries. All users consulting with this thesis will have to
sign the following statement:

In consulting this thesis I agree not to copy or closely paraphrase it in whole or
in part without the written consent of the author; and to make proper written
acknowledgement for any assistance which I have obtained from it.

Beyond this, I do not wish to place any restriction on access to this thesis.

Li-aung Yip Date

ii

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

Sources Declaration

I declare that this thesis is my own work and has not been submitted in any form for another
degree or diploma at any university or other institute of tertiary education. Information de-
rived from the published and unpublished work of others has been acknowledged in the text
and a list of references is given.

Li-aung Yip

iii

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

Abstract

The automatic detection of circulating gas embolisms using continuous-wave Doppler ultra-
sound would be useful for medical diagnosis and research. The best monitoring site for CW
Doppler gas embolism detection is the precordial region, but not much success has been ob-
tained in automatic distinction of embolic signals against precordial background noise. A
promising method due to Chappell, using the novel empirical mode decomposition (EMD), was
investigated.

It was found that converting Chappell’s method to a real-time system would require a real-
time EMD algorithm, but no good implementations were available. Since the EMD could
have many applications for real-time signals processing, a real-time EMD implementation
was created; the main difficulty was in handling the EMDs end effects in a block-processing
system. The program has been released for public use, testing, and feedback; the author hopes
it will become the base for improved implementations.

iv

If we knew what it was we were
doing, it would not be called re-
search, would it?

Albert Einstein

Front Matter

Formal Acknowledgements

This thesis has been made possible by help from:

� My supervisor, Dr. Owen Kenny. (An amazingly tolerant man.)

� Dr. Denise Blake and Mr. Peter Bisaro, Townsville Hospital Hyperbaric Unit, for provid-
ing the Doppler ultrasound recordings I used in my research.

� Dr. Michael Chappell, U. Oxford, for giving me pointers on who to talk to about obtain-
ing Doppler ultrasound recordings. (I promised him a postcard, but I never found his
address.)

� Dr. Shaun Belward - for letting me borrow freely from his collection of numerical math-
ematics texts (under threat of a failing mark for MA3605 if he didn’t get them back... I
appreciate it anyway.)

� Phil Turner - for liberally dispensing his own brand of sage (witty? evil? evil sounds
right) advice whenever asked.

This document was written in LYX/LATEX, because Real Documents Are Written In LATEX. The
LATEX layout file is based on Jamie Steven’s phdthesis.sty layout1, heavily customised and
enhanced by master wizards Bronson Philippa and Christopher Jordan (thanks, guys!)

Sarah and Amender helped proofread, so any spelling or grammar eerors there fault. Blame
them.

Personal Acknowledgements

I would like to extend personal thanks to my family and friends for putting up with me, even
when I’m sleep deprived and cranky (increasingly common in my old age).

� Mum and Dad: Thanks for keeping me in food, housing and Internet for 21 years. I’ll
pay you back eventually...

� Billy Rittson: for being the wise, calm, guiding influence in my life (Billy? The responsible
adult?! Now that’s just not right. Get me a bigger shiny thing, I says.)

� Bronson, Zatta (Adrian Zatta) and Michelle: Holy moly, we made it! We’re real engineers
now! (is that scary or what?)

� Sarah: because hugs and cake fix everything! Now we just have to teach her how to
cook...

1http://www-ra.phys.utas.edu.au/~jstevens/code_thesis_style.html

v

http://www-ra.phys.utas.edu.au/~jstevens/code_thesis_style.html

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

� Jenelle: Who can cook Chinese food that doesn’t taste like the walls at the Red Lantern...
but only on a Sunday.

� Wes: For not completely freaking out after I crashed your car... into a reflector post...
while reversing. A winner is me!

� Random acknowledgements: Anyone who’s ever shared their knowledge on the Internet,
or contributed to free software, with no expectations of repayment; Google (BDFL!),
Tux, XKCD, Wikipedia, Everything2, TvTropes, Old Gold chocolate, Nerf guns, Sheaffer,
Parker, Lamy, Pelikan, Diamine, and Noodler’s Legal Lapis.

xkcd #208, “Regular Expressions.”
(Randall Munroe - xkcd.com)

Software Licensing

The MATLAB code developed for this thesis has been made publically available under the
terms of the Apache Public License, version 2.0, which may be found at: http://www.
apache.org/licenses/LICENSE-2.0. The full text of the license is reproduced below.

The latest version of the code may obtained from the author’s website http://www.penwatch.
net/, or by emailing the author: liaung.yip@ieee.org. Questions, comments and im-
provements are welcome.

vi

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.penwatch.net/
http://www.penwatch.net/
liaung.yip@ieee.org

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

Apache License Version 2.0

Apache License Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that
is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are
controlled by, or are under common control with that entity. For the purposes of this defini-
tion, "control" means (i) the power, direct or indirect, to cause the direction or management
of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or
more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by
this License.

"Source" form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of
a Source form, including but not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available
under the License, as indicated by a copyright notice that is included in or attached to the
work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on
(or derived from) the Work and for which the editorial revisions, annotations, elaborations, or
other modifications represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain separable from, or
merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work
and any modifications or additions to that Work or Derivative Works thereof, that is intention-
ally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual
or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of
this definition, "submitted" means any form of electronic, verbal, or written communication
sent to the Licensor or its representatives, including but not limited to communication on
electronic mailing lists, source code control systems, and issue tracking systems that are
managed by, or on behalf of, the Licensor for the purpose of discussing and improving the
Work, but excluding communication that is conspicuously marked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a
Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a
perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license
to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense,
and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a
perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated
in this section) patent license to make, have made, use, offer to sell, sell, import, and oth-
erwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by com-
bination of their Contribution(s) with the Work to which such Contribution(s) was submitted.
If You institute patent litigation against any entity (including a cross-claim or counterclaim in
a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes
direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any
medium, with or without modifications, and in Source or Object form, provided that You
meet the following conditions:

You must give any other recipients of the Work or Derivative Works a copy of this License;
and

You must cause any modified files to carry prominent notices stating that You changed the
files; and

You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within
such NOTICE file, excluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file distributed as
part of the Derivative Works; within the Source form or documentation, if provided along
with the Derivative Works; or, within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents of the NOTICE file are
for informational purposes only and do not modify the License. You may add Your own
attribution notices within Derivative Works that You distribute, alongside or as an addendum
to the NOTICE text from the Work, provided that such additional attribution notices cannot
be construed as modifying the License. You may add Your own copyright statement to Your
modifications and may provide additional or different license terms and conditions for use,
reproduction, or distribution of Your modifications, or for any such Derivative Works as a
whole, provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion
in the Work by You to the Licensor shall be under the terms and conditions of this License,
without any additional terms or conditions. Notwithstanding the above, nothing herein shall
supersede or modify the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks,
or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work
(and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WAR-
RANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determin-
ing the appropriateness of using or redistributing the Work and assume any risks associated
with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or
otherwise, unless required by applicable law (such as deliberate and grossly negligent acts)
or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the Work (including but not limited
to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and
all other commercial damages or losses), even if such Contributor has been advised of the
possibility of such damages.

9. Accepting Warranty or Additional Liability.

While redistributing the Work or Derivative Works thereof, You may choose to offer, and
charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations
and/or rights consistent with this License. However, in accepting such obligations, You may
act only on Your own behalf and on Your sole responsibility, not on behalf of any other
Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless
for any liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

vii

http://www.apache.org/licenses/

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

Nomenclature

Barotrauma rupturing of the lungs due to overpressure.

CW Doppler continuous-wave Doppler ultrasound.

Decompression illness (DCI) umbrella term for DCS and barotrauma.

Decompression sickness (DCS) severe medical condition resulting from the precipitation
and expansion of gas bubbles in the body during depressurisation.

Empirical mode decomposition (EMD) a technique for time-domain decomposition of sig-
nals into intrinsic mode functions (IMFs.)

Extrema the local minima and maxima of a signal, i.e. the turning points.

Fast Fourier Transform (FFT) method for analysing frequency content of a signal; usually
synonymous with the short-time FFT, which analyses frequency content over time.

Gas embolism a gas bubble > 25µm in the circulatory system.

Intrinsic mode function (IMF) an oscillatory signal component extracted by the EMD.

Middle cerebral artery (MCA) large artery in the brain.

Precordial region the chest area near the heart.

PW Doppler pulsed-wave Doppler ultrasound.

Subclavian vein either of the two large veins which return blood from the arms (shoulder
area).

Stationary, nonstationary signals signals which repeat for all time are stationary; signals
which evolve over time are non-stationary.

viii

Contents

1 Background 1

1.1 Bubbles . 1

1.2 Detection of bubbles . 3

1.3 Summary . 7

2 Literature Review 8

2.1 Automatic Systems for analysis of CW Doppler audio 8

2.2 Chappell’s Algorithm . 10

2.3 Empirical mode decomposition . 13

2.4 Summary . 17

3 Methodology 18

3.1 Implementation Goals . 18

3.2 Implementation method . 19

3.3 Verification . 19

4 Implementation 20

4.1 Implementation Architecture . 20

4.2 Buffer object . 21

4.3 IMF object . 22

4.4 EMD Object . 27

4.5 Testing Framework . 27

4.6 Summary . 27

ix

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

5 Testing and Verification 29

5.1 Testing parameters . 29

5.2 Test vectors . 30

5.3 Test Vector 0: Basic functionality check . 31

5.4 Test Vector 1 : Execution speed vs. Input Size . 33

5.5 Test Vector 2: Execution Speed vs. Number of IMFs extracted 36

5.6 Test Vector 3 : Execution Speed vs. Number of Sifting Iterations 37

5.7 Test Vector 4 : Comparison of output with other implementations 38

5.8 Summary . 41

6 Summary and Conclusions 42

References 44

A MATLAB implementation of Offline EMD 47

B User Manual: Online EMD program 49

B.1 Buffer object . 50

C Testing Framework 52

C.1 EMD_Test() usage . 52

C.2 EMD_Test() example . 53

C.3 Standard Test Settings . 54

Contents x

List of Figures

1.1 Doppler effect. From URL http://www.centrus.com.br/DiplomaFMF/
SeriesFMF/doppler/capitulos-html/imagens-cap-01/fig-02.jpg 5

1.2 CW Doppler ultrasound instrument. 5

2.1 A simplified explanation of Chappell’s method. 11

2.2 How the empirical mode decomposition assists in detecting anomalous features. 12

2.3 An illustration of the EMD concept. 14

4.1 Streaming EMD – cascading “waterfall” structure of calculations 20

4.2 Streaming data architecture - Buffer, EMD and IMF objects. 21

4.3 End effects in blockwise IMF calculation (exaggerated for illustrative effect.) . 22

4.4 Cubic splines (left) vs. Hermite splines (right.) 23

4.5 End effects and their reduction via “mirrorisation.” 25

4.6 Details of the mirrorisation process for the end of the interpolation interval. . . 25

4.7 Overlapping block calculations to reconstruct the “true” IMF without end ef-
fects. 26

5.1 First 5000 samples of an online EMD calculated with default settings. 32

5.2 Profiler data - 20 runs of basic test using ’Hermite’ interpolation method 32

5.3 Execution speed for different input lengths. 35

5.4 Execution speed for different input lengths. 36

5.5 Execution speed for different numbers of sifting iterations. 38

5.6 Output of online and offline implementations for Signal #1 (simple). 39

5.7 Output of online and offline implementations for Signal #3 (real world) 40

xi

http://www.centrus.com.br/DiplomaFMF/SeriesFMF/doppler/capitulos-html/imagens-cap-01/fig-02.jpg
http://www.centrus.com.br/DiplomaFMF/SeriesFMF/doppler/capitulos-html/imagens-cap-01/fig-02.jpg

1
Background

This thesis was initially motivated by the problem of detecting circulating bubbles (gas em-
bolisms) in the human body. These bubbles can cause a wide variety of symptoms (up to and
including death), so research into methods for their detection and characterisation are of great
interest. In particular, automatic systems for bubble detection would be useful for medical and
research applications.

We will now outline the nature of gas embolisms, and current methods for their detection.

1.1 Bubbles

The presence of small gas bubbles in the body is harmless; deliberate injections of gas mi-
crobubbles can even be clinically useful [1, 2]. It is the larger bubbles > 25µm which cause
problems.

Gas bubbles of this size can be introduced into the body in several ways, including:

� Invasive procedures: hypodermic injections contaminated with air, compressed air ac-
cidents, surgical procedures[3], etc.

� Decompression: Breathing pressurised air drives a large amount of inert gas into the
blood. If subsequent decompression is gradual, the gas is harmlessly eliminated via the
lungs, but rapid decompression causes the gas to precipitate as bubbles in situ [4].

1

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

� Barotrauma: Keeping breath held while decompressing will rupture the lungs due to
overpressure, driving air into the bloodstream. A mere 1-1.3 metres ascent in water
(with breath held) can cause this to occur [5, 6]. 1

Gas bubbles in the body can lead to serious medical complications [7, 8, 6, 5]:

� During rapid decompression, bubbles form in the body and expand (Boyle’s Law2),
causing decompression sickness (the bends.) In addition to causing extreme pain, the
bubbles damage surrounding tissues as they expand.

� Gas bubbles in the bloodstream > 25µm (gas embolisms) can lodge in blood vessels, cut-
ting off the blood supply to parts of the body. Large gas embolisms do this very effect-
ively. Obstruction of the pulmonary circulation causes “the chokes”; obstruction of the
coronary artery causes heart attack; obstruction of the blood supply to the brain can
cause neurological damage or stroke. Less than 1mL of gas bubbles (total) can cause
death [8, p120].

The only treatment for air embolisation is recompression in a hyperbaric chamber. Delays in
giving treatment lead to increased risks of permanent injury or death [8, 9].

1.1.1 SCUBA Diving

In SCUBA diving literature, decompression sickness (the bends) and barotrauma are grouped
together under the heading of decompression illness or DCI.

The development of safe dive protocols to avoid DCI has historically been by experimental
research - if a diver suffered DCI after executing a particular dive profile, that dive profile was
considered to be unsafe. Data from many dives gave enough information to build dive tables,
defining the envelopes for safe diving profiles. Even so, the dive tables are not applicable to
all individuals; many factors may predispose a diver to decompression sickness, so that even
“safe” dive profiles can lead to DCS .

The symptoms of DCI will usually be immediately obvious - bloody froth from the lungs
indicates barotrauma, while the bends, chokes, itches, or staggers are all indicators of DCS
[6]. This is not always the case, however. Sometimes the onset of symptoms after a dive can
occur well after a diver has reached the surface - see the case studies in [8, p156] for examples.

1.1.2 The need for automatic bubble detection systems

Non-invasive means of detecting and characterising gas emboli in the human body have sev-
eral applications. Firstly, portable bubble detection equipment would be useful in diagnosing
cases of gas embolisation in divers before the onset of symptoms, facilitating pre-emptive

1Interesting note: Hypothetically, if you are ever thrown out of an airlock into space, you must avoid barotrauma
by breathing out. You can survive without air for three minutes, provided that you still have lungs to breath with
afterwards.

2Boyle’s law: PV = nRT. A decrease in gas pressure results in expansion of the gas.

Chapter 1. Background 2

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

treatment. Secondly, bubble detection and characterisation is useful for research purposes,
such as the development of better dive protocols, or investigating the mechanisms of bubble
formation.

JCU, for example, is currently cooperating with Queensland Health in researching the effect
of helicopter vibrations on increased precipitation of bubbles into the bloodstream. This is
significant because patients with DCI are often flown to treatment facilities via helicopter; it
is hypothesised the vibrations could be precipitating more bubbles into the blood, worsening
the patient’s condition.

Usual methods for bubble detection rely on use of medical ultrasound, with the ultrasound
data being analysed by trained personnel in real time [8, 10]. (This will be discussed more
below.) There are two problems, however, arising from human factors:

1. Human involvement introduces subjectivity, which is a problem for objective research
[11].

2. Constant attention is required, which limits the amount of time that can be spent monit-
oring for bubbles. Low densities of emboli, which can still be clinically significant, may
not be detected [3].

An automatic bubble detection system would have two main benefits. Firstly, automatic
methods would give far more consistent and repeatable results than humans; secondly, an
automatic system would not require constant attention , so the detection of low emboli dens-
ities can be achieved by monitoring for days or hours at a time.

Finally, it should be noted that automatic bubble detection techniques may have wider ap-
plications. Solid embolisms in the bloodstream (blood clots, fat droplets) are just as clinically
important as gas embolisms; detecting these is similar to detecting gas emboli, but more diffi-
cult [3].

1.2 Detection of bubbles

Medical ultrasound instruments are the primary means of embolus detection in practical use
[10]. Several other ways of detecting gas embolisms in humans have been explored, includ-
ing methods based on the measurement of electrical impedance or optical sensors [12]; these
methods remain experimental in nature, and have not found practical applications.

1.2.1 Ultrasound principles

The basic principles of ultrasound are simple. A piezoelectric transducer generates a pulse
(or continuous wave) of high-frequency vibrations - a sound wave - and this sound wave
propagates through the body. Echoes are produced whenever a difference in acoustic imped-
ance (density) is encountered [13]; the echoes can be picked up with another transducer, and
yield information about structures inside the body [12, 14, 15] :

Chapter 1. Background 3

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

� The amplitude of the echoes give information about the size and composition (density)
of the reflectors. Reflectors with greater differences in density return a greater fraction
of incident energy; bigger reflectors return larger echoes because they intercept more
energy in total.

� The lag between transmitting the pulse and recieving the echoes tells us the distance to
the reflectors.

� The frequency shift of the echo tells us the velocity of the reflector (Doppler effect - Figure
1.1)

Different ultrasound instruments are constructed to interpret the echo information in different
ways .

� CONTINUOUS-WAVE (CW) DOPPLER uses two transducers: one continuously transmit-
ting a sound wave at frequency f0, and another constantly receiving the echoes. The
focal point of the two transducers defines the instrument’s “sensitive zone” [16, p534].
(Figure 1.2.)
The received echoes are demodulated so the echoes at f0 (stationary objects) are re-
moved and the Doppler shifts are in the audible range. The output is a continuous
audio signal, which is listened to by a human expert. This method can determine the
amplitude of the echoes (corresponding to reflector size/composition) and Doppler fre-
quency shift (corresponding to reflector velocity), but no depth information is obtained.

� PULSED-WAVE (PW) DOPPLER is analogous to time-domain reflectometry. A single
transducer is used alternately to send a pulse of ultrasound, and then recieve the echoes.
It can be considered a depth-selective version of continuous-wave Doppler, returning
information about the depth of reflectors in addition to their size and velocity [16, p535].

� ULTRASOUND IMAGING is exactly analogous to radar or echolocation. Pulses of ultra-
sound are used (as in PW Doppler), but an entire phased array of transducers are used
to receive the echoes (not just one), yielding echo direction information in addition to
depth and amplitude.
The output of an ultrasound imaging instrument is generally a 2D image showing a
cross-section of the body. More expensive instruments can also produce 2D colour Dop-
pler overlays and 3D images, as well as replicating the functionality of CW or PW Dop-
pler at the same time.

Other, more specialised, ultrasound instruments exist. One of these is the DUAL-FREQUENCY

ULTRASOUND, which uses two transmitting transducers; one at a “pump” frequency which
induces resonance in certain objects of interest only, and one at an “image” frequency as in
normal ultrasound [17]. These instruments are not widespread and they will not be further
considered.

1.2.2 Ultrasound bubble detection

Embolisms are detected by using ultrasound to monitor a large blood vessel. Suitably large
blood vessels include the subclavian veins (arm/shoulder), femoral arteries (thighs), middle
cerebral artery (brain), or the precordial region (heart) [10].

Chapter 1. Background 4

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

Figure 1.1: Doppler effect. From URL http://www.centrus.com.br/DiplomaFMF/
SeriesFMF/doppler/capitulos-html/imagens-cap-01/fig-02.jpg

Sensitive AreaSensitive Area

Transm
it R

ec
ie
ve

Figure 1.2: CW Doppler ultrasound instrument.

Chapter 1. Background 5

http://www.centrus.com.br/DiplomaFMF/SeriesFMF/doppler/capitulos-html/imagens-cap-01/fig-02.jpg
http://www.centrus.com.br/DiplomaFMF/SeriesFMF/doppler/capitulos-html/imagens-cap-01/fig-02.jpg

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

The choice of monitoring site is important because bubbles in the blood are mostly trapped
during the blood’s passage through the lungs [8, p131]. Monitoring of the subclavian vein,
for example, will only intercept bubbles that originate in the arms. Similarly, monitoring the
femoral artery will only detect bubbles originating in the legs, and monitoring the MCA will
only detect bubbles that form in the brain.

The precordial region (heart), however, is the crossroads for all circulating blood in the body.
All blood passes through the heart before the lungs; therefore, if we monitor for bubbles in
the heart, this is in some sense3 equivalent to monitoring the entire circulation. Therefore
monitoring of the precordial region is preferred where possible [10, 18].

CW Doppler instruments are the most commonly used because of their wide availability, low
expense, and robust construction; this is offset by the level of skill needed to correctly position
the instrument and interpret the audio signal that is produced [10].

PW Doppler is rarely used, because although the instrument theoretically gives good depth
discrimination, it is more expensive and much harder to operate than simple CW Doppler,
and gives little advantage in practice [10]. Dual-frequency ultrasound units, while designed
for bubble detection, are similarly rarely used due to their expense and relatively recent de-
velopment [17, 12].

Ultrasound imaging is a possibility [12, 19, 13], but the trans-thoracic echocardiography (TTE)
technique is an invasive procedure; non-invasive Doppler ultrasound is typically preferred.

1.2.3 CW Doppler bubble detection procedures

In CW Doppler monitoring, the instrument is placed so that the sensitive zone is aligned with
a large blood vessel. (Figure 1.2.) The output signal is then interpreted aurally (by ear.)

Bubbles in the circulation are exceedingly good reflectors of sound [14, 20], and move with
the same speed as the blood; therefore, circulating gas embolisms return high-amplitude re-
flections with a Doppler shift. (Figure 1.1.)

Typical bubbles typically take about 10ms [18] to transit the monitored volume, producing
transient “chirps” or “warbles” in the Doppler audio output; bubbles as small as 40µm can be
detected by listening for these distinctive embolic signals [8, p121].

Though bubbles produce the loudest echoes (for their size), any moving object in the mon-
itored area will produce Doppler-shifted echoes as well (background noise.) For example, the
blood itself contains millions of blood cells in motion; while each blood cell only reflects a
small amount of sound, the sum of the echoes from many blood cells is significant, and mani-
fests in the output signal as a quiet, periodic “whoosh” [8].

For monitoring of the extremities (subclavian vein, middle cerebral artery, femoral artery, etc.)
this “whoosh” is the main source of background noise; the bubble signals are usually clearly
audible above it, making detection of bubbles in these parts of the body comparatively easy
[10].

3Some bubbles may dissipate or become stuck before they reach the heart. [REF]

Chapter 1. Background 6

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

Recall from above, however, that monitoring of the extremities may miss some bubbles after
they are filtered out by the lungs. We would therefore like to monitor the precordial region,
through which all blood (and therefore all bubbles) must pass. This is complicated by the high
level of background noise in the precordial region; according to Nishi, et. al. [10], “the signal
in the precordial region is extremely noisy, with contributions from the blood flow, heart valve
action, and heart wall motion.”

These background noises can sound very similar to embolic signals [18], and differentiating
them is difficult. It takes well-trained personnel to produce reliable and consistent results [10].

1.3 Summary

The presence of bubbles in the human bloodstream, termed gas emboli, can be potentially
fatal. Ultrasound instruments are capable of detecting bubbles circulating in the blood; the
most commonly used is the continuous-wave Doppler ultrasound, which is cheap and widely
available.

The output of the CW Doppler instrument is an audio signal which is interpreted aurally
(by ear); the difficulty of interpreting the output is dependent on the monitoring site. The
extremities are easy to monitor for bubbles, but some bubbles may be missed. The heart
(precordial region) is therefore the best monitoring site, as all bubbles will pass through the
heart, but the high level of background noise in the precordial region makes interpretation of
the Doppler signal difficult.

An automatic system for bubble detection would be desirable for both medical and research
purposes. We will discuss the current state of automatic bubble detection systems in the next
section.

Chapter 1. Background 7

2
Literature Review

2.1 Automatic Systems for analysis of CW Doppler audio

The basic challenge in designing a CW Doppler based automatic bubble detection system
is to correctly detect the presence of embolic signals (ES) in a Doppler audio signal. This is
complicated by the presence of background noise due to the normal operation of the body.

For monitoring of the extremities, the background noise is relatively quiet and this is not an
issue; but measurements of bubbles at the extremities do not generalise to the rest of the body.
We would like to monitor the precordial region because bubble formation in any part of the
body can be detected there.

The problem is that the precordial region has many sources of background noise which may
overpower the ES, and which may sound very similar to ES as well - i.e. they may have
very similar time-frequency characteristics. This makes implementation of automatic bubble
detection methods for the precordial region much more difficult than for the extremities.

2.1.1 Fourier/filter-bank techniques

Conventional time-frequency techniques, based on the FFT or frequency-selective filters, per-
form well when analysing signals that contain relatively little background noise.

� As early as 1977, Kisman was able to use the plain FFT to obtain good bubble detection
rates with Doppler probes implanted directly adjacent to the vein of interest, thereby

8

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

minimising the presence of artifacts in the signal [21]. While this work showed that
automatic detection of emboli was possible, the highly idealised experiment involved
invasive procedures and the processing of a signal with virtually no artifacts, neither of
which apply to our case.

� Tufan, et. al. developed a program that utilised the Teager Energy Operator and a
simple bandpass filter, which reliably detected embolic signals in the subclavian vein
[11]. Again, this signal is relatively low in background noise, which makes detection of
ES easy.

� Markus, Cullinaine and Reid used the conventional FFT in an online program to detect
emboli from trans-cranial Doppler measures [22]. This program was shown to perform
about as well as a panel of human experts [3]. Once again, this signal has very low
background noise.

The literature abounds with many more Fourier-based systems that can successfully detect
embolic signals in the cerebral circulation or peripheral veins, where there is relatively little
background noise [12].

2.1.2 Wavelet techniques

The discrete wavelet transform (DWT) is another method for the time-frequency analysis of
signals. Like the Fourier transform, which decomposes signals into a weighted sum of si-
nusoids, the DWT decomposes signals into a weighted sum of wavelets. Unlike the Fourier
representation of a signal, which retains only frequency information, the wavelet representa-
tion contains both time and frequency information; this makes it more suited to the analysis
of nonstationary signals [23] (i.e. signals which change with time.)

Since Doppler audio signals are an example of a nonstationary signal, there have been several
attempts to apply the DWT:

� Lui, et. al. implemented a wavelet-transform based analyser which detected very large
gas embolisms injected into dogs [24]. This was found to be useful in context, but does
not relate well to detecting the small bubbles typical of DCS in humans.

� Aydin, et. al. used the DWT to analyse very short samples of transcranial Doppler audio
signals. Each sample contained one feature in isolation - an artifact, Doppler speckle, or
an embolic signal; their algorithm was able to correctly classify the vast majority of 300
such samples [25].

While there have been no publications about applying the wavelet transform to the analysis
of precordial Doppler recordings, this does not imply that the wavelet transform is unsuitable
[12]. Chappell even suggests that it may be an avenue of future research [18].

Chapter 2. Literature Review 9

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

2.1.3 Other techniques (not using CW Doppler)

Eftedal et. al. [19, 12] were able to implement a system that used high-resolution ultrasound
imaging of the precordial region to detect bubbles graphically (as opposed to Doppler audio.)
It was found that even relatively untrained personnel were able to count individual bubbles
in the ultrasound images, and a computer program for doing this automatically was also
developed.

The high resolution of the images was made possible by a technique known as trans-esophagic
echocardiography (TEE), in which the ultrasound probe is inserted down the throat; this al-
lows placement of the probe very close to the heart. Unfortunately this procedure carries a
risk of perforating the oesophagus, so the research was limited to animal experiments only.

2.1.4 Empirical mode decomposition

The empirical mode decomposition (EMD) is a relatively new method for analysing non-stationary,
non-linear signals [26]. Like the Fourier or wavelet transforms, the empirical mode decompos-
ition reduces a time signal into a set of basis signals; unlike the Fourier or wavelet transforms,
however, the basis functions are derived from the data itself. Each basis function of the EMD,
known as an intrinsic mode function (IMF), captures the repeating behaviour of the signal at
some particular time scale.

There has been one attempt by Chappell et. al.[27, 18] to apply the EMD to the off-line de-
tection of emboli in the precordial region. Their approach relies on the regular occurrence of
artifacts compared to the transient nature of the embolic signals.

Chappell claims that this method achieves excellent sensitivity when run on precordial Dop-
pler audio recordings (nearly all bubbles are detected), though specificity (false positives) are
a problem [18]. As this is the only known successful attempt at analysing precordial Doppler
audio, we will turn our attention to the specifics of Chappell’s method.

2.2 Chappell’s Algorithm

2.2.1 Principle of operation

Chappel’s algorithm, for offline analysis of precordial Doppler recordings, is described in his
paper [18]. Although the details are somewhat complicated, the basic concept is remarkably
simple. It consists of four main stages: heartbeat detection, empirical mode decomposition, statist-
ical comparison of heartbeats and feature classification.

Chapter 2. Literature Review 10

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

Heartbeat signal envelope (slightly preprocessed)
Anomaly

Find heartbeat times

Slice individual heartbeats out of signal

Departure from
expected shape.
Anomaly detected.

Determine "normal heartbeat shape" by averaging heartbeats

Compare each heartbeat with the "normal shape".

Figure 2.1: A simplified explanation of Chappell’s method.

The principle of operation is illustrated in Figure 2.1. The premise is that bubble-free precor-
dial Doppler recordings will contain many heartbeats which should look the same - i.e. their
envelopes should be very similar. The many individual heartbeats in the signal are detected
(heartbeat detection) and averaged together to estimate what an average heartbeat should look
like, as well as the margin of variation that can be expected.

Chapter 2. Literature Review 11

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

Sample signal with large inter-beat variation

Anomalous feature not detected.
(a) The simple algorithm fails to work where the heartbeats have the same shape, but very
different heights.

Original Signal

Component 1
"Wide" length features

Component 2
"Medium" length features

Component 3
"Narrow" length features

Anomalous feature easily detected.
(b) Separation of components using empirical mode decomposition.

Figure 2.2: How the empirical mode decomposition assists in detecting anomalous features.

Once we have an idea of what the normal heartbeat should look like, we can compare this to
each of the original heartbeats to see if any of the heartbeats contain unusual features (statist-
ical comparison.) Small deviations will be ignored if they do not vary too far from the expected
shape, but large excursions will be detected as anomalous features that cannot be part of a
normal heartbeat. These anomalies are flagged for feature classification into either bubble or
non-bubble signals.

The problem with this approach is that if the individual heartbeats vary widely as a matter
of course, small features of interest may be lost against the background of normal variations
in the signal. Figure 2.2a shows this occurring in a highly idealized signal where the last
heartbeat contains an obvious anomaly. Because the heartbeats vary so much in amplitude,
the margin of expected variation is very wide and the anomaly does not exceed the threshold
for detection.

The root problem is that the variability in the large repeating features overpowers the small
features of interest. To resolve this, Chappell applied the EMD to decompose the Doppler
audio into components based on the time-scales (widths) of features in the signal. Figure 2.2b

Chapter 2. Literature Review 12

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

is an idealized illustration of this concept. The large repeating features all have the same width
(regardless of amplitude) and are separated away from the very short-duration anomaly in
the last heartbeat; the simple procedure outlined above is then applied to each component. This
effectively isolates the large variations into their own components, while the anomaly in the
third component is easily detected and flagged for investigation.

2.3 Empirical mode decomposition

As mentioned above, Chappell was effectively able to increase the signal to noise ratio for an-
omalous feature detection by decomposing the signal based on the time scales of the features,
irrespective of their amplitudes. To do this Chappell used the empirical mode decomposition,
a signals-processing algorithm first developed by Huang, et. al. in 1998 [26]. We will describe
this algorithm now.

2.3.1 Motivation

The root problem with traditional signal processing techniques is their limited time-frequency
resolution.

Consider the FFT as an example. We can either choose a small FFT size and obtain good
time resolution, or a long FFT size and obtain good frequency resolution, but not both. We
will always be uncertain about either a feature’s timing in the signal or its frequency content.
Since bubbles and normal precordial Doppler features are so close in time and frequency,
distinguishing them requires accuracy in both.

The wavelet transform allows both high time and frequency resolution, and was suggested by
Chappell as a possible approach. However, while the wavelet transform can yield both time
and frequency precision, this comes at great computational cost; this often makes it unsuitable
for real-time applications.

The empirical mode decomposition is an alternative to these techniques. The FFT and wavelet
transforms attempt to transform a signal from the time domain to the frequency domain; the
EMD does away with the concept of a “frequency domain”, dealing with the time domain
only. Therefore “lack of frequency resolution” is not an issue.

Chapter 2. Literature Review 13

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

2.3.2 Basics

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1
1) Original signal

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1
2) Extrema detection

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1
3) Envelope interpolation

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1
4) Trend estimation

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.2

0

0.2

0.4

0.6

0.8
5) Extract oscillating mode

High frequency wave
Carrier wave

Figure 2.3: An illustration of the EMD concept.

To illustrate the concept of the EMD, consider the signal marked (1) in Figure 2.3. It is clear
by inspection that it consists of a high-frequency sine wave riding atop a triangular “carrier”
wave. Huang observed that the extrema (local minima and maxima) of the signal (2) define
an upper and lower envelope for the signal (3), and that the average of these two envelopes
might give the average trend (4) of the signal (ignoring the highest-frequency oscillations.)
Subtraction of the trend from the signal will therefore isolate the highest frequency component
(5).

In general, signals will consist of more than just one oscillatory component and simple carrier
wave; complex signals will have “one undulation is riding on top of another, and they, in turn,
are riding on still other undulations, and so on,” as Huang puts it [26]. The idea of the EMD is
to repeatedly apply the above process to separate out the fastest oscillatory mode, then the
next fastest, and so on until the signal has been entirely broken down into simple oscillatory
components, which Huang calls intrinsic mode functions (IMFs.)

Chapter 2. Literature Review 14

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

2.3.3 EMD Algorithm

The EMD algorithm is remarkably elegant. We will give pseudocode first, then explain its
operation.

Algorithm 1 Offline EMD algorithm.

EMPIRICAL-MODE-DECOMPOSITION(c(t))
1 r(t) = c(t)
2 n = 1
3 repeat
4 [IMFn(t) , r(t)] = EXTRACT-MODE(r(t))
5 n = n + 1
6 until max(r(t)) < ε OR residue is monotone
7 return IMF1 . . . IMFk , r(t)

c(t) original signal, to be decomposed into intrinsic mode functions (IMFs)

IMF1...IMFk the intrinsic mode functions extracted from c(t). The number of IMFs is not
known in advance.

r(t) residue after IMF extraction.

EXTRACT-MODE(x(t))
1 d0(t) = x(t)
2 n = 0
3 repeat // Sifting loop
4 if dn(t) is a valid IMF, or n > MAX-ITERATIONS
5 IMF = dn(t)
6 r(t) = x(t)� dn(t)
7 return IMF, residue
8 else
9 [(tmax, vmax)] = FIND-MAXIMA(dn(t))

10 [(tmin, vmin)] = FIND-MINIMA(dn(t))
11 emax(t) = INTERPOLATE([(tmax, vmax)])
12 emin(t) = INTERPOLATE([(tmin, vmin)])
13 ρn(t) = MEAN(emax, emin)
14 dn+1(t) = dn(t)� ρn(t)
15 n = n + 1

dn(t) The “detail” of the signal - an estimation of the IMF. dn(t) is refined by
successive iterations of the sifting loop until it becomes an IMF.

(tmin, vmin) The times and amplitudes of the local minima in the signal. (resp. maxima.)

emin(t) The lower envelope of the signal, obtained by interpolation between the
minima. (resp. upper envelope and maxima.)

ρn(t) The average of the upper and lower envelopes, which estimates the “carrier
signal” or “trend” in dn(t) - i.e. the “low frequency” part of dn(t).

Subtracting dn+1(t) = dn(t)� ρn(t) removes the low frequency part from dn(t).

Here c(t) is the signal to be decomposed into intrinsic mode functions. We repeatedly apply
the EXTRACT-MODE function, first to the input c(t), then iteratively to the residue from the
last extraction. We continue extracting IMFs until the residue is monotonic or “sufficiently
small”.

Chapter 2. Literature Review 15

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

EXTRACT-MODE operates by repeatedly de-trending dn(t) - that is, starting with d0(t) = x(t),
repeatedly estimate and subtract ρn(t) from dn(t) to produce dn+1(t); this process is known
as sifting. Eventually, we will end up with a dn(t) which has zero mean - that is, the carrier
wave has been completely removed, and d(t) is the pure “high frequency” component of the
original signal. At this point we have extracted the IMF and return the results IMFk(t) = dn(t)
and r(t) = x(t)� dn(t).

The description above is purposely broad. Several details are left up to the implementer:

� The method of determining if dn(t) is an IMF - i.e. how to test that it has zero local
mean.

� The method of interpolating the extrema to obtain emax(t) and emin(t).

The usual implementation determines if dn(t) is zero mean by demanding that the carrier
signal ρn(t) � 0 to within some arbitrary tolerance ε. Alternately, we can approximate this by
demanding that dn(t) has the same number of zero crossings as extrema (�1), which forces
dn(t) to be “centred around zero,” a looser condition for zero-mean [26, 28].

In still other implementations, it was observed that just running a fixed number of sifting
iterations produces is sufficient to produce valid IMFs most of the time. In these implement-
ations, the number of sifting iterations is just fixed a priori, and the zero-meanness of the IMF
is not explicitly checked [28].

The method of interpolating the extrema to obtain the signal envelopes is also subject to
choice. The usual choice is the cubic splines method [26, 29, 28], which is simple but has
some drawbacks [29, 30]. Other choices will be discussed in Chapter 4.

2.3.4 EMD applications and implementations

The EMD is becoming an increasingly used tool for signal analysis where the usual time-
frequency techniques fail to produce adequate results. It is easy to find papers about the
application of the EMD to analyse financial data[31], ionospheric disturbances [32], and seis-
mographic data[33], amongst other things.

A number of implementations exist, some of which are proprietary and some of which are
freely available.

� Huang, et. al. implemented a proprietary version at NASA, which is available under
license.1 This was the version used by Chappell [18].

� Alan Tan’s HHT – free download from The Mathworks. 2 This is a very simple imple-
mentation similar to the implementation in Appendix A.

1http://www.nasa.gov/centers/goddard/news/dynadx_diagnostic.html
2http://www.mathworks.com/matlabcentral/fileexchange/19681-hilbert-huang-transform

Chapter 2. Literature Review 16

http://www.nasa.gov/centers/goddard/news/dynadx_diagnostic.html
http://www.mathworks.com/matlabcentral/fileexchange/19681-hilbert-huang-transform

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

� Manuel Ortiguera’s – rParabEMD, available from the Mathworks website.3 This im-
plementation is an accompaniment to the paper [30], which attempts to address some
problems with the EMD - notably difficulty in accurate location of extrema in the data,
and the problematic end effects at either edge of the IMFs.

� Flandrin, Rilling, Goncalves – pack_emd, accompanying their paper “On the EMD and
its algorithms” [28]. Available from Patrick Flandrin’s website.4 There are several differ-
ent implementations and demonstrations included, notably including a “local sifting”
implementation that claims to avoid “oversifting” the IMF’s, and of most interest, a
proof-of-concept online EMD implementation.

To implement Chappell’s method in real-time will require a correspondingly real-time im-
plementation of the EMD. I have only found two references to real-time implementations of
EMD. One was due to Meeson [29], who discussed some theoretical aspects of how the online
EMD might be computed, but did not produce or publish an implementation. The other was
due to Rilling et. al, who published a working proof of concept.

Rilling’s proof of concept was a quick demonstration produced for the NSIP 2003 conference.
It is available on the Internet as noted above, as the file package_emd/EMDs/emd_online.m
within the archive pack_emd.zip. Unfortunately it is not of “production” quality; it lacks
documentation (to the point of having nearly no comments), the variable names are so obfus-
cated as to defy translation, and the implementation style is strongly reminiscent of “spaghetti
code”. It is not very robust: it works with the particular examples selected by the authors, but
not with a simple sine wave input.

A better real-time EMD implementation will be required before Chappell’s method can be
implemented in real time.

2.4 Summary

The problem of automatic bubble detection is worthy of study because its solution opens up
new avenues for treatment and research into decompression sickness and emboli in general.
Automatic embolus detection methods have been successfully implemented to process the
“quiet” signals from the peripheral veins, with some achieving comparable performance with
humans. However the significant problem of non-invasive, automatic bubble detection in the
precordial region (using CW Doppler or otherwise) remains unsolved.

The problem with automatic CW Doppler ultrasound in the precordial region is the similarity
of normal heart sounds and bubble sounds. So far the most promising progress towards solv-
ing this problem has been made by Chappell, who used the empirical mode decomposition
to process the Doppler audio, but only in offline operation. We would like to implement this
in real time, but this cannot proceed until a real-time EMD implementation exists.

Such an implementation would be worthwhile beyond the context of automatic bubble detec-
tion; there are many signals processing problems that would benefit from the availability of a
realtime EMD implementation.

3http://www.mathworks.com/matlabcentral/fileexchange/21409-empirical-mode-decomposition
4http://perso.ens-lyon.fr/patrick.flandrin/emd.html

Chapter 2. Literature Review 17

http://www.mathworks.com/matlabcentral/fileexchange/21409-empirical-mode-decomposition
http://perso.ens-lyon.fr/patrick.flandrin/emd.html

3
Methodology

The literature review identified a need for an online implementation of the empirical mode
decomposition, i.e. one that operates on a stream of data on real time. Since an online EMD
implementation could potentially be applied to a wide range of problems, the production of
such an implementation would be a worthy undertaking.

We therefore pose the following questions:

� How can the empirical mode decomposition be adapted for use with streaming data
instead of recorded data?

� What are the performance characteristics of such a streaming-data implementation? In
particular, can it be made to run in real time?

� Will a streaming-data implementation produce comparable results to the standard off-
line implementation?

These questions will be answered by implementing an online EMD program and performing
thorough testing.

3.1 Implementation Goals

The objective is to implement the streaming-data EMD in a way that is a) immediately useful
for real-time applications and b) a good base for future improvements.

The criteria for the implementation to be immediately useful are:

18

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

� Real time performance. The definition of “real-time” is loose, but for the EMD to be
useful in audio processing applications (such as Doppler bubble detection), it should be
able to handle a 22050Hz audio stream in real time.

� Accuracy. The online EMD must be functionally equivalent to the offline EMD in that
they produce the same (or at least very similar) IMF decompositions.

� Easy to use. If the basic user manual is more than two pages long, the program is too
complicated to use.

The criteria to be “a good base for future improvement” are more subjective. The code must
be easy to understand and easy to modify; this will be accomplished by following software
engineering best practises 1 :

� Practise modular design; small pieces of code are easier to understand and easier to
debug.

� Avoid premature optimisation, which complicates the code and often gives no real be-
nefit. “Prototype before polishing.”

� Explicitly check the code is doing what it is supposed to (by using assert(), etc.) If
inconsistencies are detected, crash immediately; this aids debugging.

3.2 Implementation method

It was decided early on that the implementation would be in MATLAB. While MATLAB is
not as fast as compiled languages such as C/C++, D or Ocaml, its large libraries, expressive
syntax for numerical mathematics, and excellent integrated debugging capability make it the
best choice for rapid prototyping of signals processing algorithms.

In terms of the actual algorithmic details, my objective is not to reinvent the wheel; as much
as possible will be drawn from what prior work there is. Meeson’s paper [29], Rilling’s proof-
of-concept implementation [28], and Rato’s paper [30] are rich sources of ideas, though none
will lead to a complete implementation on their own.

3.3 Verification

Verification of the implementation will require thorough testing to establish:

1. Performance characteristics.

2. Correctness of output.

The design of the test signals, test vectors, and testing procedure will be deferred to Chapter
5.

1These are paraphrasings of Eric S. Raymond’s “UNIX Philosophy,” a list of rules for good software design. See
his book “The Art of UNIX programming,” which is freely available on the Internet.

Chapter 3. Methodology 19

The unwritten rules of code op-
timisation:
#1 : Don’t.
#2 : Don’t... yet. (Experts only.)
#3 : Profile before you optimise.

Unknown (from c2.com)

4
Implementation

4.1 Implementation Architecture

The realtime EMD calculation can be modelled as a cascade of sifting operations [29, 28]. For
the moment, consider the first sifting operation in the chain. We wait until sufficient data
has accumulated, then perform sifting to compute a block of the first IMF, simultaeneously
producing a block of the corresponding residue. The residue from the first sifting is then used
as the input to the second sifting, and so on.

Since there is some lag between input between input to a sifting operation and a block of the
IMF being produced, the input data propagates through the system like a waterfall (Figure
4.1). Note that it may take a significant time between the input of some data with timestamp t,

Residue

Residue

Residue

IMF #1 IMF #2 IMF #3

Input data stream

Sifting Operation

Sifting Operation

Sifting Operation

Lag

Lag

Lag

Figure 4.1: Streaming EMD – cascading “waterfall” structure of calculations

20

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

and the kth IMF being calculated for time t [28]. For many applications we are only interested
in the first few IMFs - the calculation of these progresses quickly and the lag is of little concern.

Input data stream

Preprocess

Residue

IMF #1

Residue

IMF #2IMF Object

Residue

IMF #3IMF Object

EMD ObjectEMD Object

IMF Object

Buffer

Figure 4.2: Streaming data architecture - Buffer, EMD and IMF objects.

The waterfall analogy suggested a natural form for calculation of the EMD, based on a cascade
of IMF objects (Figure 4.2). Each IMF object has only one responsibility: to accept some input
data stream and perform blockwise extraction of the first IMF and residue. Chaining many of
these IMF blocks together, using the residue output of each IMF block as the input to the next,
results in streaming calculation of the entire EMD (with some time lag for the higher-order
modes.)

The collection of IMF objects is controlled by an EMD object, which has one input - the data
from an input Buffer - and one set of outputs - the calculated IMF’s and final residue. The
end user can treat the implementation as a “black box”: the only things they need to concern
themselves with are providing the stream of input data to the Buffer (and hence to the EMD
object), and extracting the IMFs once they are calculated.

In terms of the implementation, the design of the EMD object is trivial; its only job is to
sequentially tell the IMF blocks when new data is available. The design of the Buffer object
is also relatively trivial. The real challenge is designing a sifting algorithm that extracts an IMF
block-by-block - i.e. using only local information - while obtaining the same result as would be
obtained by offline sifting.

4.2 Buffer object

The Buffer object was implemented as a circular buffer, which keeps its memory usage low.
It also supports pre-processing of the input data with any MATLAB filter object; this allows
seamless filtering and sampling rate conversion (decimation or interpolation) of the input
stream before the data is stored to the Buffer.

The design of the Buffer object is not particularly interesting, so it will not be expanded on
here. See Appendix B.1 for documentation and usage examples.

Chapter 4. Implementation 21

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

4.3 IMF object

The only responsibility of the IMF object is to calculate the first IMF and residue of some data
stream. In general, this is accomplished by waiting for input data to accumulate until we have
enough to compute a small block of the IMF and residue, using the same sifting process as in
the offline algorithm. We compute further blocks of the IMF and residue as data becomes
available, and append these to the IMF/residue we have already calculated; this continues as
long as new input data is presented.

The catch is that computation of each block must be able to pick up exactly where the previous
block left off, with smooth joins between blocks. Two factors complicate this:

� Each sifting iteration changes the IMF slightly. If different numbers of sifting iterations
are applied to each block, the IMF will no longer be continuous across the block bound-
aries.

� The sifting process produces end effects, which can cause the output to be discontinuous
between blocks.

Signal

IMF

Blockwise IMF

Figure 4.3: End effects in blockwise IMF calculation (exaggerated for illustrative effect.)

The first problem is solved by fixing the number of sifting iterations a priori. According to
Rilling, et. al. [28], as few as four to ten sifting iterations usually suffice to extract meaningful
IMFs. Using this few sifting iterations may even be advantageous, as oversifting until the
stop conditions are strictly met can destroy the physical meaning of the extracted IMFs [28].
This implementation uses 10 sifting iterations by default; this can be configured to trade off
IMF extraction quality for increased speed. 1

The problem of end effects, however, has no simple solution; the problem is fundamental to
the sifting process. Recall that the trend function ρ(t), to be removed from each iteration of
the IMF candidate d(t), is calculated by interpolating the extrema of d(t). Since these extrema
do not extend all the way to the ends of the data, the envelope has to be extrapolated at the
ends. Since cubic splines are bad extrapolators [30], this leads to large errors of the type seen
in 4.5.

The end effects are not problematic for the offline EMD, but they introduce discontinuities
into the blockwise IMF output (Figure 4.3.) If the discontinuities produce spurious extrema
in the residue, then subsequent IMF extractions from that residue will be severely corrupted.

1See the ’IMF:SIFT_BLOCK:NUM_SIFTING_ITERATIONS’ config option.

Chapter 4. Implementation 22

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

Several strategies for reducing end effects have been implemented in the sifting code,
IMF.Sift_Block();

1. Using Hermite splines instead of cubic splines for envelope interpolation.

2. Extending the interpolating points past the interval by “mirrorisation”

3. Calculating more data than needed, then trimming the excess.

4.3.1 Hermite splines

In most implementations of the EMD, the envelopes are interpolated from the extrema using
cubic splines. These are a piecewise polynomial interpolant, where an individual cubic poly-
nomial (spline) is fitted between each pair of points being interpolated [34]. When the second
derivative is forced to be continuous between neighbouring splines, the total curvature is
minimised (which is to say that cubic splines can be considered the “smoothest possible” in-
terpolant [35, p114].)

Fitting a cubic spline to n + 1 points involves solving for 4n coefficients - four for each of n
individual splines. With cubic splines, the solution for each of these coefficients (and thus the
shape of the curve) depends on the entire set of points to be interpolated; this is undesirable
because adding a single extra interpolating point will change the entire curve.

By definition, the stream of data in an online application will be constantly adding new points
to interpolate; the dependence of each cubic spline on the entire data set is therefore problem-
atic.

Meeson suggested the use of Hermite splines [29], which are very similar to cubic splines; but
instead of forcing the second derivative to be continuous, the first derivative is fixed at each
point [36]. Since the first derivative for point i can be estimated by averaging the gradients
between points i� 1 $ i and i $ i + 1, each spline can be calculated using local information
only. This means that adding new points to the end of the data only changes the very last
spline; the others remain static; additionally, end effects will only appear in the last spline.

0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2
Cubic spline interpolation − spline()

0 0.2 0.4 0.6 0.8 1
−5

0

5
Hermite interpolation − pchip()

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.15

−0.1

−0.05

0

0.05

0.1

Difference

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

−0.05

0

0.05

0.1

0.15

Difference

Figure 4.4: Cubic splines (left) vs. Hermite splines (right.)

Chapter 4. Implementation 23

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

The difference is illustrated in Figure 4.4. To simulate the effects of adding a single new point
to be interpolated, a cubic splines interpolant was fitted first to all the data points except the
last, and then to the entire set. The difference between the two curves is shown at bottom left;
it can be seen that adding one point has changed the entire extent of the curve. When this is
repeated for Hermite splines, however, the curves are exactly the same until the last segment.

Having established the superiority of Hermite splines, I adapted the pchip_tx() example2

from [37] – a reference implementation of MATLAB’s built in pchip()3. Two modifications
were made.

� Firstly, pchip_tx() used a complicated weighted geometric mean between adjacent
derivatives to determine the slopes at each point, which produced strange effects; this
was replaced with a simpler calculation.

� Secondly, pchip_tx() was designed to be “shape preserving” in that turning points
in the data are assumed to have zero derivative. Since this might lead to inaccurate
representation of the signal envelope, this feature was removed.

The end result was a function called hermite_spline() which has identical usage to MAT-
LAB spline() or pchip(), but customised for envelope interpolation with limited end
effects.

The sifting function Sift_Block() uses hermite_spline() by default, but the
’IMF:SIFT_BLOCK:ENVELOPE_INTERPOLATION_METHOD’ option can be used to config-
ure this at runtime.

4.3.2 Mirrorisation

“Mirrorisation” is a technique suggested by Rilling, et. al. [28] to reduce the end effects due
to extrapolation. The concept is simple: instead of extrapolating the spline to cover the ends
of the interval, extrapolate the data past the end of the interval. This is done by making a
mirror-copy of the extrema, then interpolating with both the mirrored extrema and the ori-
ginal extrema (Figure 4.5.)

The effect is to constrain the spline from “shooting off;” it will now transition smoothly across
the ends of the interval. Note that this does not guarantee the envelopes for subsequent blocks
will line up exactly, as that would require knowledge of the future signal, but the discontinuity
should be limited.

The way in which the extrema are mirrored is chosen to represent the data. Consider the
end of the interpolation interval; if the data appears to be trending upwards, an extra max-
ima is inserted to ensure the interpolated upper envelope emax(t) continues to rise; simil-
arly, an extra minima will be added to continue a downwards trend. The extrema are then
mirrored around the inserted extrema. If the data appears to be holding steady, the extrema
are mirrored without inserting any extra.

2See the “NCM file collection” at http://www.mathworks.com/moler/chapters.html.
3short for “Piecewise Cubic Hermite Interpolating Polynomial.” See doc pchip for more information

Chapter 4. Implementation 24

http://www.mathworks.com/moler/chapters.html

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

End effects

"Mirrorised" Extrema "Mirrorised" Extrema

Figure 4.5: End effects and their reduction via “mirrorisation.”

Case 1:
Last extrema was a maxima
Signal ended below last minima.

Interpretation: Signal was trending downwards.
Add an extra minima and mirror all extrema around it.

Case 2:
Last extrema was a maxima
Signal ended above last minima.

Interpretation: Signal was trending steady.
Mirror all extrema around the last one.

Case 3:
Last extrema was a minima
Signal ended above last maxima.

Interpretation: Signal was trending upwards.
Add an extra maxima and mirror all extrema around it.

Case 4:
Last extrema was a minima
Signal ended below last maxima.

Interpretation: Signal was trending steady.
Mirror all extrema around the last one.

Figure 4.6: Details of the mirrorisation process for the end of the interpolation interval.

This process is shown graphically in Figure 4.6. The same process applies to the start of the
interpolation interval, except (naturally) in reverse.

Chapter 4. Implementation 25

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

The algorithmic implementation of the mirrorisation process (Figure 4.6) is contained in
@IMF/Sift_Block.m as the Mirrorize_Extrema() function. It can be turned on or off
by using the ’IMF:SIFT_BLOCK:MIRRORISE_EXTREMA’ flag.

4.3.3 Calculating excess data

Even with mirrorisation and Hermite splines instead of cubic splines, there will still be end
effects in the interpolation. This is a natural consequence of having local data only : we “don’t
know what comes next,” so we can never interpolate it.

The use of Hermite splines, however, should limit the end effects to the first and last interpol-
ation intervals. If we are willing to overlap block IMF calculations and throw away the ends
of each block, we should be able to eliminate end effects nearly completely; the concept is
illustrated in Figure 4.7.

Signal

Reconstructed IMF

Overlapping Block
Calculations

Figure 4.7: Overlapping block calculations to reconstruct the “true” IMF without end effects.

By default, the program will retrieve “ten extrema worth” of previous data to pad the begin-
ning of the block, perform the sifting process, and then discard the “last three extrema worth”
of data from the right hand side. Since this padding and discarding increases the amount of
work that must be done per unit input, there may be a performance penalty. The larger the
block size processed, however, the smaller this penalty should be.

� The ’IMF:SIFT_BLOCK:NUM_EXTREMA_PRECEDING’ configuration option controls
the amount of historic data appended to the beginning of blocks before sifting.

� The ’IMF:SIFT_BLOCK:NUM_RIGHT_TRIM_EXTR’ configuration option controls the
amount of each IMF block that is trimmed off the right side before appending to the
stored IMF.

Chapter 4. Implementation 26

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

4.4 EMD Object

Operation of the EMD object is fairly straightforwards (see Appendix B for usage instruc-
tions.)

At present, the EMD object causes a fixed number of IMFs to be extracted from the input
stream ; this means that the number of IMFs required for interpretation of a particular signal
must be known and configured a priori.

4.5 Testing Framework

4.5.1 Features

An automated testing framework was written to enable quick, repeatable testing of the al-
gorithm. Its main features are as follows:

� Fixed configuration options for each test.

� Repeated testing to determine average runtime.

� Saves of EMD outputs (IMFs and residues) for later review.

� Saves figures as high-resolution .pdf.

� All command window output, including any MATLAB errors or warnings, are captured
to a .txt log file. (This can be used for debugging purposes.)

� Error-tolerance - If a MATLAB error (i.e. OutOfMemory) occurs during a particular test,
that test is skipped. This allows batch testing runs to continue even if some tests produce
errors.

The design of the testing framework is trivial and needs no explanation. Usage instructions,
examples, and the default configuration options for the testing framework are given in Ap-
pendix C.

4.6 Summary

An streaming-data version of the EMD was implemented. The chief difficulty in the imple-
mentation was preventing the inclusion of end effects in the computed IMF and residue. The
inclusion of end effects would mean the IMF obtained would be inaccurate (as compared the
the IMF obtained by offline sifting). Sharp discontinuities due to end effects also manifest as
spurious extrema in the residue, which severely corrupts the calculation of the next IMF.

A variety of measures were taken to eliminate (or at least reduce) the end effects. Hermite
interpolation was substituted for cubic splines; the extrema were “mirrorised” to extend the

Chapter 4. Implementation 27

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

data; and an overlap-and-discard calculation method was implemented to chop off what end
effect remained. The effectiveness of these techniques will be evident during testing.

The implementation was designed to have a particularly elegant architecture, and was coded
in a style which eschews complicated optimisations in favour of clarity. Given the public
release of the code to the world, this will hopefully facilitate easy understanding and im-
provement of the code by future contributors.

Verification of the implementation will be performed in the next section.

Chapter 4. Implementation 28

5
Testing and Verification

5.1 Testing parameters

5.1.1 Testing environment

The MATLAB code was tested using the following environments:

Desktop

MATLAB version MATLAB 7.10.0.499 (R2010a) 32-bit (glnx86)

Operating System Arch Linux, kernel 2.6.35-ARCH #1 SMP PREEMPT

CPU Intel(R) Core(TM)2 Duo CPU E7400 @ 2.80GHz

RAM 4Gb

Laptop

29

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

MATLAB version MATLAB 7.10.0.499 (R2010a) 32-bit (glnx86)

Computer Lenovo Thinkpad X200s

Operating System Ubuntu Linux 10.04, kernel 2.6.32-24-generic-pae #43-Ubuntu SMP

CPU Intel(R) Core(TM)2 Duo CPU L9400 @ 1.86GHz

RAM 4Gb

Timing is performed using the tic and toc functions in the pattern tic; timed_operation();

toc; (as recommended in the MATLAB documentation.)

5.1.2 Test Signals

Three test signals were chosen to test the implementation.

� Test signal #1: Elementary synthesised signal. Sum of three sinusoids - sin(100� 2πt)+
sin(300� 2πt) + sin(500� 2πt).

� Test signal #2: Artificial heartbeat data. Simulated 80BPM heartbeat signal with random
variation in beat time and amplitude, and added noise. See Heartbeat_Test_Data.m
for details.

� Test signal #3: Real-world signal : sample from the DCIEM precordial Doppler audio
studies, originally by DCIEM Canada and provided to me by the Townsville Hospital
Hyperbaric Unit.

All test signals 30 seconds long at 22050Hz sampling rate.

REMARKS: In general, synthesised signals will have relatively “simple” behaviours and de-
compose into a small number of IMFs. Real-world signals are much more complex; electro-
cardiogram heartbeat signals, for example, are hypothesised to exhibit fractal time character-
istics [38]. Therefore, the test signal set contains examples of both synthetic and “real world”
signals.

Some purposely simplistic signals are used to test the robustness of the implementation.
Rilling’s proof-of-concept on-line EMD, for example, works well on complex signals, but
crashes when analysing a sine wave. Additionally, the IMFs from simple signals should have
very particular forms - the sum of three sine waves, for example, should decompose back into
three sine waves (plus or minus some end effects.)

5.2 Test vectors

The testing vectors will be designed to answer the following questions:

Chapter 5. Testing and Verification 30

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

� Speed: How fast does the program run? How does the program’s execution time change
with...

– increasing input size? Is the execution time O(n), O(n2), O(2n)... ?

– increasingly complex signals?

– the number of IMFs extracted?

– the number of sifting iterations?

� Correctness: How does the program’s output compare to offline implementations?

� Robustness: Does the program run on all inputs, or are there certain input signals which
will cause it to crash?

The test vectors are as follows:

� Test vector 0: A preliminary test run with simple signal #1, to validate basic functional-
ity.

� Test vector 1: Test runs on various lengths of data to determine speed and scalability.
The tests will be repeated for each of the three test signals, which will determine how
the runtime varies with signal complexity.

� Test vector 2: Test runs on fixed lengths of data to determine how the run time varies
with number of IMFs extracted.

� Test vector 3: Test runs on fixed lengths of data to determine how the run time varies
with number of sifting iterations.

� Test vector 4: Small test runs on 1-second data samples to characterise the accuracy of
the online EMDs output as compared to reference offline implementations.

5.3 Test Vector 0: Basic functionality check

5.3.1 Hypothesis

The EMD program should correctly decompose the sum of three sinusoids back into three si-
nusoidal components. Assuming the program design is correct, no end effects should appear
in the middle of the components.

5.3.2 Procedure

The input signal was 10 seconds of Signal #1. The test was repeated 20 times with standard
settings - 2000 sample input blocks, 5 IMF’s extracted, 10 sifting iterations, and Hermite in-
terpolation of the envelopes. (See appendix for standard settings.) The test rig was run using
the MATLAB profiler to assess performance of the code.

Chapter 5. Testing and Verification 31

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−4

−2

0

2

4

O
rig

in
al

 s
ig

na
l.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−5

0

5

IM
F

 #
1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−5

0

5

IM
F

 #
2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−5

0

5

IM
F

 #
3

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−5

0

5

IM
F

 #
4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−5

0

5

IM
F

 #
5

Figure 5.1: First 5000 samples of an online EMD calculated with default settings.

5.3.3 Results

Figure 5.2: Profiler data - 20 runs of basic test using ’Hermite’ interpolation method

The total runtime for the test was 873 seconds for 20 runs (desktop computer.) The average
runtime was 43.61 seconds to run over the 10 seconds of 22050Hz data (x̄ = 43.61s, σ = 1.44s),
which is 4.3x slower than real time.

The outputs were mostly as expected (Figure 5.1). End effects are seen at the beginning of
each IMF, which leads to transients in IMFs #4 and #5 before all the IMFs settle into the correct
extraction of the sinusoids. No end effects are seen in the middle of the IMFs, which means

Chapter 5. Testing and Verification 32

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

that the measures taken to prevent their appearance between blocks have been successful (at
least for this test signal.)

Profiler results are shown in Figure 5.2.

5.3.4 Discussion

This preliminary result is encouraging; it shows that the algorithm runs within an order of
magnitude of real-time on a fairly average computer, even before any optimisation of the code has
been attempted. The necessary speedup to real-time could potentially be obtained just by using
a faster computer, or downsampling the data (say to 5kHz) before performing the EMD.

In the context of Chappell’s method of bubble detection, the data is de-noised by applying
a 12.5ms moving average before the EMD is calculated. This is more or less equivalent to
applying a lowpass filter, so downsampling the input signal (with a FIR lowpass filter and
decimator) may actually be justified.1

The profiler results show which areas of the code would benefit most from optimisation.

� ~70% of the execution time was spent performing the hermite_spline() interpola-
tion.

� 4.5% of execution time is spent in the unique() function. This function is only used
for debugging purposes - the calls to unique() could be removed for an instant 5%
performance gain.

It is notable that the hermite_spline() function is a custom version of MATLAB’s built in
pchip() function. Might using the pchip() (or spline()) function instead lead to faster
performance?

5.4 Test Vector 1 : Execution speed vs. Input Size

5.4.1 Hypotheses

1. The streaming EMD only concerns itself with small pieces of data at a time. Therefore
its execution time should scale linearly with increasing input size.

2. If the number of IMFs is fixed, more complex signals should require no more work to
decompose than simple signals. The execution speed should not be dependent on signal
complexity.

1(The necessary code for applying an FIR decimating filter is already implemented in the Buffer class, and is
quite easy to use; see Appendix X for usage examples.)

Chapter 5. Testing and Verification 33

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

5.4.2 Experiment

Record the run time of the EMD while permuting the following variables:

� Signal length: range between 1 second and 30 seconds of a 22050Hz input signal.

� Different signals:

– “simple signal” - 30 seconds of sin(100t) + sin(300t) + sin(500t).

– “complex artificial signal” - 30 seconds of Heartbeat_Test_Data(). 12.5ms
smoothing applied with MATLAB smooth() to denoise the signal.

– “real world signal” - 30 seconds of precordial Doppler recording, taken from DCIEM
training tape; more specifically the 30 seconds from 00:15-00:45 in DCIEM-S1.mp3.
12.5ms smoothing applied with MATLAB smooth().

All other variables shall be kept fixed (i.e. default settings) except for the interpolation method,
which will be set to ’PCHIP’ instead of ’Hermite’ to speed up execution of the tests. The
number of sifting iterations shall be fixed at 10, and the number of IMFs extracted shall be
fixed at 5.

5.4.3 Results

Streaming Data
Duration

#1 Simple #2 Artificial #3 Real-World

1 3.52 2.25 7.46
2 8.26 9.34 15.32
3 11.25 10.16 21.61
4 14.53 23.36 29.07
5 18.49 29.36 37.59
6 23.56 34.05 45.17
7 27.26 51.66 52.95
8 31.13 70.27 59.71
9 33.94 78.78 67.08
10 37.97 87.81 76.84
15 60.73 137.90 117.94
20 78.28 175.31 152.38
25 98.98 231.03 188.29
30 120.23 280.11 228.61

Executed on desktop (Core 2 Duo E7400 @2.80Ghz.)

Table 5.1: Execution speed testing for different input lengths - results.

Chapter 5. Testing and Verification 34

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection
Sheet1

Page 1

0 5 10 15 20 25 30 35

0

50

100

150

200

250

300

Runtime vs. input signal length
All standard settings except use of 'PCHIP' interpolation

#1 Simple
#2 Artificial
#3 Real-World

Input length (seconds of signal - 22050Hz signal)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Figure 5.3: Execution speed for different input lengths.

5.4.4 Analysis

Hypothesis 1: The execution speed does appear to scale linearly with the input duration (Hy-
pothesis 1.) It appears that some jitter can be expected, however. Maybe this can be explained
by the spacing of peaks in the data; an iteration of block sifting will only trigger when “10
extrema worth of data” becomes available, which could be infrequent for data with widely
spaced extrema.

Hypothesis 2: Apparently complex signals do require more work than simple signals to decom-
pose, even when the number of IMFs and sifting iterations is fixed; this was unexpected. This
may be because they have a greater density of local extrema, so the sifting code must do more
work.

Performance on real data appears to be substantially slower than simple signals such as sums
of sine waves. In this test, the simple signal executed in roughly 4� real-time; the artificial
heartbeat data about 9� real time; and the real-world Doppler data in about 7-8� real time.

These speeds all fall well short of real-time execution, but it should be remembered that:

1. No optimisation has been attempted; the code was purposely written for clarity, not
performance.

2. There are many parameters which can be used to adjust performance. For example,
10 sifting iterations may be excessive; according to Rilling, meaningful IMFs can be
extracted with just four sifting iterations [28]. This could feasibly reduce run time by
half.

Finally, the linear execution time (O(n))may be a significant result; it shows that unlike O(n2)

algorithms, the online EMD will scale well to handle large inputs.

Chapter 5. Testing and Verification 35

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

5.5 Test Vector 2: Execution Speed vs. Number of IMFs
extracted

5.5.1 Hypothesis

Each IMF requires a large amount of work (sifting) to extract. Therefore, the execution speed
should increase linearly as the number of IMFs extracted.

5.5.2 Testing

Record runtimes for the EMD operating for 30 seconds on each of the three input signals, with
the number of IMF’s extracted set to 2, 4 and 6. All other configuration parameters shall have
default values.

5.5.3 Results

Number of IMFs
extracted

#1 Simple #2 Artificial #3 Real-World

2 54.24 200.27 160.06
4 95.92 253.40 209.07
6 146.38 314.98 254.02

Executed on desktop (Core 2 Duo E7400 @2.80Ghz.)

Table 5.2: Execution speed testing for different input lengths - results.

Sheet1

Page 1

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

0

50

100

150

200

250

300

350

Runtime variability with number of IMFs extracted

All other settings standard

#1 Simple
#2 Artif icial
#3 Real-World

Number of IMFs extracted

R
un

tim
e

(s
ec

o n
ds

)

Figure 5.4: Execution speed for different input lengths.

Chapter 5. Testing and Verification 36

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

5.5.4 Analysis

Runtime appears linear in the number of IMF’s, though more data points would be required
to prove this. There is also a large amount of overhead regardless of how many IMFs are
extracted.

5.6 Test Vector 3 : Execution Speed vs. Number of Sifting
Iterations

5.6.1 Hypothesis

Each sifting iteration requires a large amount of work - most notably repeated envelope in-
terpolation, which is very expensive to evaluate. Therefore, we should be able to trade IMF
accuracy for speed by decreasing the number of sifting iterations.

5.6.2 Experiment

Record runtimes for the EMD operating on 10 seconds on each of the three input signals, with
the number of sifting iterations set to 2, 4, 6, 8 and 10. All other configuration parameters shall
have default values.

5.6.3 Results

Number of sifting
iterations

#1 Simple #2 Artificial #3 Real-World

2 35.92 83.69 71.98
4 36.21 84.19 72.02
6 36.36 84.71 73.17
8 35.62 83.90 72.76
10 36.36 84.26 73.56

Executed on desktop (Core 2 Duo E7400 @2.80Ghz.)

Table 5.3: Execution speed testing for different numbers of sifting iterations - results.

Chapter 5. Testing and Verification 37

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection
Sheet1

Page 1

1 2 3 4 5 6 7 8 9 10 11

0

10

20

30

40

50

60

70

80

90

Runtime vs. sifting iterations

All settings standard

#1 Simple
#2 Artif icial
#3 Real-World

Sifting iterations

R
un

tim
e

(s
ec

o n
ds

)

Figure 5.5: Execution speed for different numbers of sifting iterations.

5.6.4 Analysis

It appears that reducing the number of sifting iterations gives only a negligible benefit. The
number of sifting iterations can therefore be left at 10, which should be assured to give high-
quality IMFs with little sacrifice in speed.

5.7 Test Vector 4 : Comparison of output with other imple-
mentations

5.7.1 Hypothesis

The output of the online EMD should closely resemble the output from a similar offline EMD
run with the same data and same parameters.

5.7.2 Experiment

An offline EMD implementation using very similar algorithms to the online version has been
developed (Appendix A). Short test signals will be applied and the output compared.

5.7.3 Results

The online and offline algorithms were run on one-second samples of signal #1 and signal #3.
The first 5 IMFs extracted are shown in Figures 5.6 and 5.7.

Chapter 5. Testing and Verification 38

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

0 0.5 1 1.5 2

x 10
4

−5

0

5

O
rig

in
al

 s
ig

na
l.

0 0.5 1 1.5 2

x 10
4

−5

0

5

IM
F

 #
1

0 0.5 1 1.5 2

x 10
4

−5

0

5

IM
F

 #
2

0 0.5 1 1.5 2

x 10
4

−5

0

5

IM
F

 #
3

0 0.5 1 1.5 2

x 10
4

−5

0

5

IM
F

 #
4

0 0.5 1 1.5 2

x 10
4

−5

0

5

IM
F

 #
5

(a) Online algorithm output

0 0.5 1 1.5 2

x 10
4

−5

0

5

0 0.5 1 1.5 2

x 10
4

−5

0

5

0 0.5 1 1.5 2

x 10
4

−5

0

5

0 0.5 1 1.5 2

x 10
4

−5

0

5

0 0.5 1 1.5 2

x 10
4

−5

0

5

0 0.5 1 1.5 2

x 10
4

−5

0

5

(b) Offline algorithm output

Figure 5.6: Output of online and offline implementations for Signal #1 (simple).

Chapter 5. Testing and Verification 39

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

0 0.5 1 1.5 2

x 10
4

−0.05

0

0.05

O
rig

in
al

 s
ig

na
l.

0 0.5 1 1.5 2

x 10
4

−0.05

0

0.05

IM
F

 #
1

0 0.5 1 1.5 2

x 10
4

−0.05

0

0.05

IM
F

 #
2

0 0.5 1 1.5 2

x 10
4

−0.02

0

0.02

IM
F

 #
3

0 0.5 1 1.5 2

x 10
4

−0.02

0

0.02

IM
F

 #
4

0 0.5 1 1.5 2

x 10
4

−0.02

0

0.02

IM
F

 #
5

(a) Online algorithm output

0 0.5 1 1.5 2 2.5

x 10
4

−0.05

0

0.05

0 0.5 1 1.5 2 2.5

x 10
4

−0.05

0

0.05

0 0.5 1 1.5 2 2.5

x 10
4

−0.1

0

0.1

0 0.5 1 1.5 2 2.5

x 10
4

−0.2

0

0.2

0 0.5 1 1.5 2 2.5

x 10
4

−0.1

0

0.1

0 0.5 1 1.5 2 2.5

x 10
4

−0.05

0

0.05

(b) Offline algorithm output

Figure 5.7: Output of online and offline implementations for Signal #3 (real world)

Chapter 5. Testing and Verification 40

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

5.7.4 Analysis

Both algorithms produce similar results for the simple test signal, but completely different
results for the real-world signal.

This could be due to either:

� A flaw in the implementation of the online EMD

� Different (but equally valid) decompositions of the same data.

It should be noted that unlike the FFT or wavelet transforms, which have mathematical defin-
itions, the empirical mode decomposition is defined solely by the algorithm used to calculate
it. In particular, this means that the IMFs for a signal are not unique; there are as many equally
valid decompositions as there are implementations of the EMD.

Further testing will be required to determine the correctness of the online implementation.

5.8 Summary

The online implementation of the EMD was tested to determine some of its performance
characteristics. The testing showed:

� The running time of the algorithm ranges from 4x slower than real time to 10x slower
than real time, depending on signal complexity.

� The algorithm scales well to large inputs - O(n) scalability.

� The more IMFs extracted, the longer the execution time (linear variation.)

� Varying the number of sifting iterations has nearly no effect on running time.

The answer to the original question – “can an online EMD implementation be made to run
in real time” – remains an open question. Though this implementation only runs at a fraction
of real time, no optimisation of any kind was attempted. Some low-hanging fruit for optim-
isation, mainly the hermite_spline() interpolation function, were identified as potential
ways to greatly accelerate the implementation.

The correctness of the algorithm could not be verified. The online and offline EMDs produced
similar output when the input signal was a simple sum of sinusoids, but produced very dif-
ferent output for the real-world Doppler ultrasound data. This may indicate either a fault
with the algorithm, which will need further testing to diagnose, or just the normal variation
in decompositions produced by different implementations of the EMD.

Chapter 5. Testing and Verification 41

6
Summary and Conclusions

Review

The problem of real-time, non-invasive bubble detection in the precordial region remains un-
solved. The most promising work to date was due to Chappell, who used a novel signals
processing technique, Huang’s empirical mode decomposition, to analyse continuous-wave Dop-
pler audio recordings with a great deal of success. A conversion of Chappell’s method to a
real-time implementation was investigated.

It was found that this task would require a real-time implementation of the empirical mode
decomposition, but no suitable implementations were available. Since a real-time EMD imple-
mentation would be useful far beyond the scope of ultrasonic bubble detection, the creation
of such an implementation was made the goal of this thesis.

Summary of results

A streaming-data EMD implementation was programmed in MATLAB and tested with a vari-
ety of inputs.

TIME PERFORMANCE: It was found that it could process real-world 22kHz audio data at about
10% of real-time speed. Optimisation was not attempted, but profiling revealed distinct po-
tential for acceleration to real time. Alternately, the program could potentially be used for less
demanding real-time applications as-is, by downsampling the input signal to a lower data

42

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

rate, or adjusting the configuration parameters. The functionality for doing this is already
implemented.

OUTPUT QUALITY: The outputs from the online and offline implementations were very sim-
ilar for simple signals, but quite different for complex signals. This is not necessarily incorrect,
as the EMD is defined by an algorithm - the set of IMFs for a given signal is not unique. More
testing is required to determine the correctness of the online implementation’s output.

RELEASE: The MATLAB code has been placed online for public use, testing and comments. It
is available at http://www.penwatch.net/realtime_emd/.

Directions for future work

The implementation does not yet run in real time. Profiling revealed that the majority of ex-
ecution time is spent performing polynomial interpolation (hermite_spline()); therefore
increasing the speed of this function alone would yield a large performance gain.

The MATLAB implementation has been successful as a proof-of-concept, and has been coded
as an example implementation for others to learn from. The ideas from this implementation
should therefore be easily transferable to a fast C implementation; if further acceleration is
required, the C implementation would make it possible to use GPGPU capability (such as
nVidia CUDA) for hardware acceleration.

Finally, much more testing with a large variety of input signals will be required to determine
if the algorithm is correct.

Chapter 6. Summary and Conclusions 43

http://www.penwatch.net/realtime_emd/

References

[1] R. V. Shohet, S. Chen, Y.-T. Zhou, Z. Wang, R. S. Meidell, R. H. Unger, and P. A. Grayburn,
“Echocardiographic Destruction of Albumin Microbubbles Directs Gene Delivery to the
Myocardium,” Circulation, vol. 101, no. 22, pp. 2554–2556, 2000.

[2] M. J. K. Blomley, J. C. Cooke, E. C. Unger, M. J. Monaghan, and D. O. Cosgrove, “Science,
medicine, and the future: Microbubble contrast agents: a new era in ultrasound,” BMJ,
vol. 322, no. 7296, pp. 1222–1225, 2001.

[3] M. Cullinane, G. Reid, R. Dittrich, Z. Kaposzta, R. Ackerstaff, V. Babikian, D. W. Droste,
D. Grossett, M. Siebler, L. Valton, and H. S. Markus, “Evaluation of new online auto-
mated embolic signal detection algorithm, including comparison with panel of interna-
tional experts,” Stroke, vol. 31, no. 6, pp. 1335–1341, 2000.

[4] C. Shilling, M. Werts, and N. Schandelmeier, The underwater handbook: A guide to
physiology and performance for the engineer. Plenum Press, New York, 1976.

[5] C. W. Dueker, Medical Aspects of Sport Diving. A. S. Barnes and Co., 1970.

[6] R. Thomas and B. McKenzie, The Diver’s Medical Companion. Sydney: Medical Diving
Centre, 1979.

[7] T. Beckman, “A review of decompression sickness and arterial gas embolism,” Archives
of family medicine, vol. 6, no. 5, p. 491, 1997.

[8] R. Walker, Diving and Subaquatic Medicine, ch. 6, pp. 55–71. Edward Arnold, 2002.

[9] K. Kizer, “Delayed treatment of dysbarism: a retrospective review of 50 cases,” Jama,
vol. 247, no. 18, p. 2555, 1982.

[10] R. Nishi, A. Brubakk, and O. Eftedal, Bennett and Elliott’s Physiology and Medicine of
Diving, ch. 10.3, pp. 501–529. Saunders, 2003.

[11] K. Tufan, A. Ademoglu, E. Kurtaran, G. Yildiz, S. Aydin, and S. M. Egi, “Automatic de-
tection of bubbles in the subclavian vein using doppler ultrasound signals,” AVIATION
SPACE AND ENVIRONMENTAL MEDICINE, vol. 77, pp. 957–962, SEP 2006.

[12] O. S. Eftedal, Ultrasonic detection of decompression induced vascular microbubbles. PhD thesis,
Norwegian University of Science and Technology, 2007.

[13] N. Pollock, “Transthoracic Echocardiography (TTE)-A Tool to Monitor Unsafe Decom-
pression Stress.,” 2003.

[14] W. N. McDicken, Diagnostic Ultrasonics: Principles and Use of Instruments, ch. Ultrasonic
wave phenomena in tissue, pp. 41–61. Crosby Lockwood Staples, 1976.

[15] F. W. Kremkau, Diagnostic Ultrasound: Principles and Instruments (Diagnostic Ultrasound:
Principles & Instruments (Kremkau)). Saunders, 2005.

[16] J. T. Bushberg, J. A. Seibert, E. M. Leidholdt, and J. M. Boone, The Essential Physics of
Medical Imaging. Lippincott Williams & Wilkins, 2002.

[17] J. Buckey, D. Knaus, D. Alvarenga, M. Kenton, and P. Magari, “Dual-frequency ultra-
sound for detecting and sizing bubbles,” Acta Astronautica, vol. 56, no. 9-12, pp. 1041–
1047, 2005.

44

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

[18] M. Chappell and S. Payne, “A method for the automated detection of venous gas
bubbles in humans using empirical mode decomposition,” Annals of biomedical engin-
eering, vol. 33, no. 10, pp. 1411–1421, 2005.

[19] O. Eftedal and A. Brubakk, “Detecting intravascular gas bubbles in ultrasonic images,”
Medical and Biological Engineering and Computing, vol. 31, no. 6, pp. 627–633, 1993.

[20] K. Hatteland and B. Semb, “Gas bubble detection in fluid lines by means of pulsed dop-
pler ultrasound,” Scandinavian Cardiovascular Journal, vol. 19, no. 2, pp. 119–123, 1985.

[21] K. Kisman, “Spectral analysis of doppler ultrasonic decompression data,” Ultrasonics,
vol. 15, no. 3, pp. 105 – 110, 1977.

[22] H. Markus, M. Cullinane, and G. Reid, “Improved automated detection of embolic sig-
nals using a novel frequency filtering approach,” Stroke, vol. 30, pp. 1610–1615, AUG
1999.

[23] C. Valens, “A really friendly guide to wavelets,” 2004.

[24] P. Lui, B. Chan, F. Chan, P. Poon, H. Wang, and F. Lam, “Wavelet analysis of embolic
heart sound detected by precordial Doppler ultrasound during continuous venous air
embolism in dogs,” Anesthesia & Analgesia, vol. 86, no. 2, p. 325, 1998.

[25] N. Aydin, F. Marvasti, and H. Markus, “Embolic doppler ultrasound signal detection
using discrete wavelet transform,” IEEE TRANSACTIONS ON INFORMATION TECH-
NOLOGY IN BIOMEDICINE, vol. 8, pp. 182–190, JUN 2004.

[26] N. Huang, Z. Shen, S. Long, M. Wu, H. Shih, Q. Zheng, N. Yen, C. Tung, and H. Liu,
“The empirical mode decomposition and the hilbert spectrum for nonlinear and non-
stationary time series analysis,” Proceedings: Mathematical, Physical and Engineering Sci-
ences, vol. 454, no. 1971, pp. 903–995, 1998.

[27] M. Chappell, Modelling and Measurement of Bubbles in Decompression Sickness. PhD thesis,
University of Oxford, 2006.

[28] G. Rilling, P. Flandrin, and P. Gonçalvès, “On empirical mode decomposition and its
algorithms,” in IEEE-EURASIP workshop on nonlinear signal and image processing NSIP-03,
Grado (I), 2003.

[29] R. Meeson, “Hht sifting and adaptive filtering,” tech. rep., INSTITUTE FOR DEFENSE
ANALYSES ALEXANDRIA VA, 2003.

[30] R. Rato, M. Ortigueira, and A. Batista, “On the HHT, its problems, and some solutions,”
Mechanical Systems and Signal Processing, vol. 22, no. 6, pp. 1374–1394, 2008.

[31] N. Huang, M. Wu, W. Qu, S. Long, and S. Shen, “Applications of Hilbert-Huang trans-
form to non-stationary financial time series analysis,” Applied Stochastic Models in Business
and Industry, vol. 19, no. 3, pp. 245–268, 2003.

[32] L. Loudet, “Application of empirical mode decomposition to the detection of sudden
ionospheric disturbances by monitoring the signal of a distant very low frequency trans-
mitter.”.

[33] C. Loh, T. Wu, and N. Huang, “Application of the empirical mode decomposition-Hilbert
spectrum method to identify near-fault ground-motion characteristics and structural re-
sponses,” Bulletin of the Seismological Society of America, vol. 91, no. 5, p. 1339, 2001.

[34] MA2201: Numerical Mathematics lecture notes. James Cook University, Townsville, 2007.

[35] G. D. Knott, Interpolating Cubic Splines. Birkhauser Boston, 2000.

[36] W. Cheney and D. Kincaid, Numerical Mathematics and Computing. Brooks/Cole, 4 ed.,
1999.

[37] C. Moler, Numerical Computing with MATLAB. SIAM, Philadelphia, 2004.

References 45

[38] P. Ivanov, L. Amaral, A. Goldberger, S. Havlin, M. Rosenblum, Z. Struzik, and H. Stanley,
“Multifractality in human heartbeat dynamics,” Arxiv preprint cond-mat/9905329, 1999.

[39] J. O. Smith, Mathematics of the Discrete Fourier Transform (DFT). Dept. of Music, Stanford
University, 2002.

[40] C. F. Van Loan, Introduction to Scientific Computing - A Matrix-Vector Approach using MAT-
LAB. Prentice-Hall, 1997.

[41] O. Eftedal, S. Lydersen, and A. Brubakk, “The relationship between venous gas bubbles
and adverse effects of decompression after air dives,” UNDERSEA AND HYPERBARIC
MEDICINE, vol. 34, no. 2, p. 99, 2007.

[42] A. Erde and C. Edmonds, “Decompression sickness: a clinical series,” Journal of Occupa-
tional and Environmental Medicine, vol. 17, no. 5, p. 324, 1975.

[43] K. Kumar, M. Powell, and J. Waligora, “Evaluation of the risk of circulating microbubbles
under simulated extravehicular activities after bed rest,” 1993.

[44] A. Støylen, “Basic ultrasound, echocardiography and doppler for clinicians.” Website,
March 2010.

[45] J. Wilbur, S. Phillips, T. Donoghue, D. Alvarenga, D. Knaus, P. Magari, and J. Buckey,
“Signals consistent with microbubbles detected in legs of normal human subjects after
exercise,” Journal of Applied Physiology, vol. 108, no. 2, p. 240, 2010.

[46] N. Huang and Z. Wu, “A review on Hilbert-Huang transform: Method and its applica-
tions to geophysical studies,” Reviews of Geophysics, vol. 46, no. 2, 2008.

[47] G. Rilling and P. Flandrin, “One or two frequencies? The empirical mode decomposition
answers,” IEEE Transactions on Signal Processing, vol. 56, no. 1, pp. 85–95, 2008.

[48] A. Boussuges, D. Carturan, P. Ambrosi, G. Habib, J. Sainty, and R. Luccioni, “Decompres-
sion induced venous gas emboli in sport diving: Detection with 2 d echocardiography
and pulsed doppler,” International journal of sports medicine, vol. 19, no. 1, pp. 7–11, 1998.

[49] H. S. Markus and C. H. Tegeler, “Experimental aspects of high-intensity transient signals
in the detection of emboli,” Journal of Clinical Ultrasound, vol. 23, no. 2, pp. 81–87, 1995.

A
MATLAB implementation of Offline EMD

As noted in Sec. 2, an actual MATLAB implementation of the EMD looks fairly close to the
pseudocode. A basic implementation is given below:

1 function [IMFs, res] = Offline_EMD (x)

2 NUMBER_OF_IMFS = 5;

3 xlen = numel(x);

4
5 IMFs = zeros(NUMBER_OF_IMFS,xlen); % Preallocate for speed

6 res = x;

7 for n = 1:NUMBER_OF_IMFS

8 [mode,res] = Extract_Mode (res);

9 IMFs(n,:) = mode;

10 end

11 end

12
13 function [mode, res] = Extract_Mode (x)

14 NUM_SIFTING_ITERATIONS = 20;

15 xlen = numel(x);

16 t_spline = 1:xlen;

17
18 d = zeros(NUM_SIFTING_ITERATIONS+1,xlen); % Preallocate for speed

19 d(1,:) = x;

20
21 for n = 1:NUM_SIFTING_ITERATIONS

22 [imin, imax, ~] = extr(d(n,:));

23 vmin = d(n,imin);

24 vmax = d(n,imax);

25

47

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

26 env_min = hermite_spline(imin,vmin,t_spline);

27 env_max = hermite_spline(imax,vmax,t_spline);

28 env_mean = (env_min + env_max) ./ 2;

29 d(n+1,:) = d(n,:) - env_mean;

30 end

31
32 mode = d(end,:);

33 res = x - mode;

34 end

The Offline_EMD() function accepts a single input x – a vector of data to decompose into
IMFs – and produces two outputs. The first, IMFs, is a matrix containing the calculcated
IMFs, each in a separate row. The second, res, is the residue left over after IMF extraction.

The current behaviour is to extract a fixed number of IMFs, but a trivial modification to the
Offline_EMD() function would make it “extract IMFs until the residue is very small”.

Similarly, the number of sifting iterations for extracting each IMF is fixed; this could be
changed to use a stopping condition instead. A suitable condition would be max(abs(env_mean))
< epsilon, where ε is some desired tolerance; this would force the extracted IMFs to be ap-
proximately zero-mean in every case.

This MATLAB code uses two non-standard MATLAB functions:

� extr() by Gabriel Rilling for finding local maxima, local minima, and zero crossings –
available from http://perso.ens-lyon.fr/patrick.flandrin/emd.html, file
pack_emd.zip/package_emd/utils/extr.m.

� hermite_spline(), a slight modification of the pchip_tx() by Cleve Moler. pchip_tx()
is a reference implementation of MATLAB’s pchip() ”piecewise Hermite interpolation
polynomial” function. You can substitute spline() or pchip() for hermite_spline()
with only minor changes in the output.

Appendix A. MATLAB implementation of Offline EMD 48

http://perso.ens-lyon.fr/patrick.flandrin/emd.html

B
User Manual: Online EMD program

Usage of the MATLAB code is fairly straightforwards. We will give a short example:

1 % Generate some test data

2 t = 0:0.001:100;

3 x = sin(2*t) + sin(3*t) + sin(5*t);

4

5 % Initialise Buffer object and EMD object

6 data_buffer = Buffer(100,1,5000,’No filter’,0);

7 EMD_Object = EMD(data_buffer);

8

9 % Feed data into the system, one block at a time.

10 blocksize = 1000; % Samples/block.

11 num_blocks = floor(numel(x)/blocksize); % Number of blocks to be fed in.

12

13 for n = 1:num_blocks

14 new_block = x(1+(n-1)*blocksize : n*blocksize);

15 data_buffer.Update(new_block); % Feed the block of data to the buffer

16 EMD_Object.Update(); % Update all IMF calculations.

17 end

18

19 plot(EMD_Object.IMFs(1).mode); % Plot the first IMF.

In this example, we create a EMD object with default options and then simulate a streaming-
data application, by parcelling out a large data array in small blocks. We plot the first IMF
after all the data has been streamed into the EMD; of course the data can also be extracted and
used at any time, not just after the streaming is complete.

49

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

Generally, the larger the block size, the more latency in IMF extraction, but the faster the
performance and the less chance of encountering IMF end effects.

B.1 Buffer object

The Buffer object was designed to be temporary storage for the incoming data stream.

Pushing data in: Data is pushed into the Buffer using the Buffer.Update(new_data_vector)
function. To limit the amount of memory used, Buffer behaves like a circular buffer; the
length of the buffer is finite, and the arrival of new data pushes old data out of memory.

Time offsets: Two counters, n_earliest and n_latest, keep track of the time offsets from
the start of the data stream (t = 1) to the beginning and end of the buffer, respectively. These
counters can be read with the Buffer.Earliest() and Buffer.Latest() functions.

Retrieving time slices: The implementation of Buffer as a circular buffer means that the in-
put sample from t = 1000 will rarely live at index 1000 of the array. The complexity of ac-
cessing particular time slices of data from the Buffer is abstracted by the accessor function
Buffer.Get(n_start, n_end), which calculates the correct indexes into the real array.

For example, the slice of data from t = 100 to t = 200 would be accessed by calling Buffer.Get(100,200).
An exception is raised if the requested time slice oversteps the bounds of the Buffer’s data
array (either because the data requested has been pushed out of the buffer, or data was re-
quested from the future.)

Retrieving the intersection between Buffers: The Buffer.CommonSection() function re-
trieves the overlapping parts of two or more Buffers. For example, if B1 contains data from
t = [100 : 200] and B2 contains data from t = [150 : 250], then Buffer.CommonSection([B1,
B2]) will return the time slice t = [200 : 250] from both Buffers.

Prefiltering: The Buffer object supports pre-filtering of the input data with a MATLAB filter
object before it is stored to the Buffer. Any MATLAB dfilt or mfilt object can be spe-
cified when the Buffer is created; if no filtering is desired, specify the string ’No filter’.

Decimation: One application of prefiltering is to decimate the incoming data to a lower
sampling rate, which reduces the computation required to process the data later. The stand-
ard mfilt.firdecim can be used to perform lowpass anti-aliasing before decimation, but
this may introduce variable group delay into the output.

If variable group delay is not acceptable, the mfilt object can be made to perform a rectan-
gular moving average instead; this will delay all components by the same time. The function
NewMovingAverageFilter.m was written to automate the creation of these filters.

Since all FIR and moving average filters will introduce group delay in the output, a delay

parameter can be specified when the Buffer is created. This parameter will offset all data re-
trievals by the specified time in seconds, effectively cancelling out the group delay by making
the Buffer lag behind the input data.

Appendix B. User Manual: Online EMD program 50

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

Example application: See HeartbeatDetection/DetectHeartbeats.m for a real-world
example – a simplistic implementation of Chappell’s heartbeat peak detection algorithm in
real-time.

Appendix B. User Manual: Online EMD program 51

C
Testing Framework

NOTE: This document may lag behind the latest release of the code. In case of conflict
between this documentation and comments in the source code, consider the source code au-
thoritative.

C.1 EMD_Test() usage

The testing framework is used by making calls to the function EMD_Test(); the list of argu-
ments defines the parameters for the test.

Argument Type Description

test_name string Human-readable test description - i.e. ’EMD Test

with triangle-wave input’.

input_filename string Path to a .mat file containing a vector of data, with
variable name raw_data.
Specifying a .mat filename that does not contain a
vector of data called raw_data is flagged as an er-
ror.

52

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

Argument Type Description

input_length integer How many samples of raw_data to use as inputs
to the EMD. Example: input_length = 10000

uses the first 10,000 elements of raw_data.
Specifying input_length to be larger than the
number of samples of raw_data is flagged as an
error.

repeat_count integer How many times to repeat the test.

EMD_config associative
array

(containers.Map)

[optional] - configuration options for the EMD
and testing process. See EMD_Default_Config.m
(Appendix C.3) for documentation of available op-
tions.
Defaults to EMD_Default_Config() if no argu-
ment is given.

output_directory string Directory to which the output files log.txt,
IMFs.pdf, and data.mat will be written.
If the directory exists, the directory and all contents
will be deleted.

plot_params struct Struct with three fields:
plot_params.PlotP - true to display and save
plot as .pdf.
plot_params.LimX and plot_params.LimY -
same meaning as for normal plots.
If plot_params is not provided, it is assumed that no
plots are desired.

C.2 EMD_Test() example

1 fs = 22050;

2 t = [1/fs:1/fs:10] * 2*pi;

3 raw_data = sin(100*t) + sin(300*t) + sin(500*t);

4
5 save(’sin_t_sin_3t.mat’,’raw_data’);

6 EMD_Test(...

7 ’Basic test’, ...

8 ’./sin_t_sin_3t.mat’, ...

9 numel(raw_data), ...

10 20, ...

11 EMD_Default_Config(), ...

12 ’/home/lws/tmp/EMD_Test/’);

Appendix C. Testing Framework 53

Yip, L. Realtime Empirical Mode Decomposition for Intravascular Bubble Detection

C.3 Standard Test Settings

The standard test settings are specified in EMD_Default_Config.m. This is reproduced
below:

1 function config = EMD_Default_Config()

2 config = containers.Map;

3
4 %% Testing configuration options.

5 config(’TESTING:BLOCK_SIZE’) = 2000;

6
7 % See Buffer class for explanations of these options.

8 config(’TESTING:BUFFER:SAMPLING_FREQUENCY’) = 22050; % 22.050 kHz. No effect in

practice.

9 config(’TESTING:BUFFER:DECIMATION_RATE’) = 1; % Decimation rate. 1 = no

decimation.

10 config(’TESTING:BUFFER:HISTORY_LENGTH’) = 22050*10; % Number of samples retained in

buffer.

11 config(’TESTING:BUFFER:FILTER’) = ’No filter’; % Do not apply any digital

filtering to bufffer data.

12 config(’TESTING:BUFFER:PROPAGATION_DELAY’) = 0; % No delay between buffer input

and output.

13
14 %% EMD configuration options.

15 % Number of IMFs to extract from input data stream.

16 config(’EMD:NUMBER_OF_IMFS’) = 5;

17
18 %% IMF configuration options.

19 % Number of sifting iterations applied to each block of IMF.

20 config(’IMF:SIFT_BLOCK:NUM_SIFTING_ITERATIONS’) = 10;

21
22 % Controls amount of historical data included in each IMF block calculation.

23 config(’IMF:SIFT_BLOCK:NUM_EXTREMA_PRECEDING’) = 10;

24
25 % Controls how much of the right of each block is thrown away to guard against

26 % end effects.

27 config(’IMF:SIFT_BLOCK:NUM_RIGHT_TRIM_EXTR’) = 3;

28
29 % Turns mirrorising of extrema on or off. Default on, which theoretically

30 % reduces end effects.

31 config(’IMF:SIFT_BLOCK:MIRRORISE_EXTREMA’) = true;

32
33 % Valid choices are:

34 % ’Hermite’ -> hermite_spline()

35 % ’PCHIP’ -> MATLAB’s pchip()

36 % ’Cubic’ -> MATLAB’s spline().

37 config(’IMF:SIFT_BLOCK:ENVELOPE_INTERPOLATION_METHOD’) = ’Hermite’; % Other valid

choices: ’PCHIP’, ’Cubic’

38
39 %% Debug options.

40 % Debug options which modify the behaviour of the program.

41 config(’IMF:SIFT_BLOCK:DEBUG:USE_ALL_HISTORIC_DATA’) = false;

42
43 % Debug output options - for displaying pretty graphs.

44 config(’IMF:SIFT_BLOCK:DEBUG:DISPLAY_EACH_SIFTING_ITERATION’) = false;

45 config(’IMF:SIFT_BLOCK:DEBUG:DISPLAY_BLOCK_OVERLAP_DIAGNOSTIC’) = false;

46 config(’IMF:SIFT_BLOCK:DEBUG:DISPLAY_EACH_BLOCK’) = false;

47 end

Appendix C. Testing Framework 54

	Background
	Bubbles
	Detection of bubbles
	Summary

	Literature Review
	Automatic Systems for analysis of CW Doppler audio
	Chappell's Algorithm
	Empirical mode decomposition
	Summary

	Methodology
	Implementation Goals
	Implementation method
	Verification

	Implementation
	Implementation Architecture
	Buffer object
	IMF object
	EMD Object
	Testing Framework
	Summary

	Testing and Verification
	Testing parameters
	Test vectors
	Test Vector 0: Basic functionality check
	Test Vector 1 : Execution speed vs. Input Size
	Test Vector 2: Execution Speed vs. Number of IMFs extracted
	Test Vector 3 : Execution Speed vs. Number of Sifting Iterations
	Test Vector 4 : Comparison of output with other implementations
	Summary

	Summary and Conclusions
	References
	MATLAB implementation of Offline EMD
	User Manual: Online EMD program
	Buffer object

	Testing Framework
	EMD_Test() usage
	EMD_Test() example
	Standard Test Settings

